If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+9u=0
a = 5; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·5·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*5}=\frac{-18}{10} =-1+4/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*5}=\frac{0}{10} =0 $
| a^2+20^2=25^2 | | 6n=6+18 | | 5x-4x+8=8-3x | | -5-3x=1x-3 | | 4x+3=17. | | 6n=3(2+6) | | 180=50-x+19 | | a^2+1^2=2^2 | | 2.5n=200 | | 5-3x=1x+3 | | k+22=29k | | 80^2+b^2=89^2 | | 25+5n=55 | | 5^2+b^2=7^2 | | v(-14+6=-56 | | 36^2+b^2=60^2 | | 180=108+3x+3 | | 1/3(3w-15)=~1/5(25-2w) | | 1.68(h)=6.72 | | a^2+9^2=10^2 | | 180=80+2x10 | | 96^2+b^2=100^2 | | ¼n=25 | | 4x➗9=37 | | 525=10n | | a^2+60^2=75^2 | | 90=56+3x+7 | | 0.18x=12 | | X^2-52=5+4x | | n÷8=5.5 | | 180=51+3x | | n-52.4=16 |